Natural gradient blind deconvolution and equalization using causal FIR filters

Scott C. Douglas*, Hiroshi Sawada, Shoji Makino

*この研究の対応する著者

研究成果: Conference article査読

抄録

Natural gradient adaptation is an especially convenient method for adapting the coefficients of a linear system in inverse filtering tasks such as blind deconvolution and equalization. Practical implementations of such methods require truncation of the filter impulse responses within the gradient updates. In this paper, we show how truncation of these filter impulse responses can create convergence problems and introduces a bias into the steady-state solution of one such algorithm. We then show how this algorithm can be modified to effectively mitigate these effects for estimating causal FIR approximations to doubly-infinite IIR equalizers. Simulations indicate that the modified algorithm provides the convergence benefits of the natural gradient while still attaining good steady-state performance.

本文言語English
ページ(範囲)197-201
ページ数5
ジャーナルConference Record of the Asilomar Conference on Signals, Systems and Computers
1
出版ステータスPublished - 2003
外部発表はい
イベントConference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers - Pacific Grove, CA, United States
継続期間: 2003 11月 92003 11月 12

ASJC Scopus subject areas

  • 信号処理
  • コンピュータ ネットワークおよび通信

フィンガープリント

「Natural gradient blind deconvolution and equalization using causal FIR filters」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル