Natural gradient multichannel blind deconvolution and source separation using causal FIR filters

Scott C. Douglas, Hiroshi Sawada, Shoji Makino

研究成果: Conference article査読

9 被引用数 (Scopus)

抄録

Practical gradient-based adaptive algorithms for multichannel blind deconvolution and convolutive blind source separation typically employ FIR filters for the separation system. Inadequate use of signal truncation within these algorithms can introduce steady-state biases into their converged solutions that lead to degraded separation and deconvolution performances. In this paper, we derive a natural gradient multichannel blind deconvolution and source separation algorithm that mitigates these effects for estimating causal FIR solutions to these tasks. Numerical experiments verify the robust convergence performance of the new method both in multichannel blind deconvolution tasks for i.i.d. sources and in convolutive BSS tasks for acoustic sources, even for extremely-short separation filters.

本文言語English
ページ(範囲)V-477-V-480
ジャーナルICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
5
出版ステータスPublished - 2004
外部発表はい
イベントProceedings - IEEE International Conference on Acoustics, Speech, and Signal Processing - Montreal, Que, Canada
継続期間: 2004 5 172004 5 21

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

フィンガープリント 「Natural gradient multichannel blind deconvolution and source separation using causal FIR filters」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル