Necessary and sufficient condition on initial data in the Besov space for solutions in the Serrin class of the Navier–Stokes equations

Hideo Kozono, Akira Okada, Senjo Shimizu

研究成果: Article査読

抄録

The Cauchy problem of the Navier–Stokes equations in Rn with the initial data a in the Besov space Bp,q-1+np(Rn) for n< p< ∞ and 1 ≤ q≤ ∞ is considered. We construct the local solution in Lα,q(0,T;Br,10(Rn)) for p≤ r< ∞ satisfying 2α+nr=1 with the initial data a∈Bp,q-1+np(Rn), where Lα,q denotes the Lorentz space. Conversely, if the solution belongs to Lα,q(0 , T; Lr(Rn)) with 2α+nr=1, then the initial data a necessarily belong to Br,q-1+nr(Rn). It implies that the initial data in the Besov space Bp,q-1+np(Rn) are a necessary and sufficient condition for the existence of solutions in the Serrin class.

本文言語English
ジャーナルJournal of Evolution Equations
DOI
出版ステータスAccepted/In press - 2020

ASJC Scopus subject areas

  • Mathematics (miscellaneous)

フィンガープリント 「Necessary and sufficient condition on initial data in the Besov space for solutions in the Serrin class of the Navier–Stokes equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル