Neural networks with branch gates

Kenichi Goto*, Kotaro Hirasawa, Jinglu Hu

*この研究の対応する著者

研究成果: Conference contribution

抄録

In this paper, a new architecture of Neural Networks (NNs) is proposed named Neural Networks with branch gates (NN-bg). It aims at improving the generalization ability of NNs by controlling the connectivity of neurons adaptively depending on the input information. To realize such architecture, we use a branch control system having low calculation costs. In the branch control system, the distance between the input values of the network and parameters of the branch control system is calculated. After normalized within 0 to 1, the outputs of the branch control system are multiplied to the branches of the NN. The parameters of the branch control system are trained by a random searching method, RasID, to realize an adaptive optimization with very small number of training steps. Through some simulations, the usefulness of the three-layered NN-bg is shown compared with conventional layered neural networks.

本文言語English
ホスト出版物のタイトル2004 IEEE International Joint Conference on Neural Networks - Proceedings
ページ2331-2336
ページ数6
DOI
出版ステータスPublished - 2004 12月 1
イベント2004 IEEE International Joint Conference on Neural Networks - Proceedings - Budapest, Hungary
継続期間: 2004 7月 252004 7月 29

出版物シリーズ

名前IEEE International Conference on Neural Networks - Conference Proceedings
3
ISSN(印刷版)1098-7576

Conference

Conference2004 IEEE International Joint Conference on Neural Networks - Proceedings
国/地域Hungary
CityBudapest
Period04/7/2504/7/29

ASJC Scopus subject areas

  • ソフトウェア

フィンガープリント

「Neural networks with branch gates」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル