Neural predictive controller of nonlinear systems based on quasi-ARX neural network

Imam Sutrisno*, Mohammad Abu Jami'in, Jinglu Hu

*この研究の対応する著者

研究成果: Conference contribution

5 被引用数 (Scopus)

抄録

This paper present a neural predictive controller (NPC) based on improved quasi-ARX neural network (IQARXNN) for nonlinear dynamical systems. The IQARXNN is used as a model identifier with switching algorithm and switching stability analysis. The primary controller is designed based on a modified Elman neural network (MENN) controller using back-propagation (BP) learning algorithm with modified particle swarm optimization (MPSO) to adjust the learning rates in the BP process to improve the learning capability. The adaptive learning rates of the controller are investigated via Lyapunov stability theorem, which are respectively used to guarantee the convergences of the predictive controller. Performance of the proposed MENN controller with MPSO is verified by simulation results to show the effectiveness of the proposed method both on stability and accuracy.

本文言語English
ホスト出版物のタイトルICAC 12 - Proceedings of the 18th International Conference on Automation and Computing
ホスト出版物のサブタイトルIntegration of Design and Engineering
ページ78-83
ページ数6
出版ステータスPublished - 2012 11月 26
イベント18th International Conference on Automation and Computing, ICAC 2012 - Loughborough, Leicestershire, United Kingdom
継続期間: 2012 9月 72012 9月 8

出版物シリーズ

名前ICAC 12 - Proceedings of the 18th International Conference on Automation and Computing: Integration of Design and Engineering

Conference

Conference18th International Conference on Automation and Computing, ICAC 2012
国/地域United Kingdom
CityLoughborough, Leicestershire
Period12/9/712/9/8

ASJC Scopus subject areas

  • 人工知能
  • ソフトウェア

フィンガープリント

「Neural predictive controller of nonlinear systems based on quasi-ARX neural network」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル