Newsmap: A semi-supervised approach to geographical news classification

Kohei Watanabe*

*この研究の対応する著者

研究成果: Article査読

18 被引用数 (Scopus)

抄録

This paper presents the results of an evaluation of three different types of geographical news classification methods: (1) simple keyword matching, a popular method in media and communications research; (2) geographical information extraction systems equipped with named-entity recognition and place name disambiguation mechanisms (Open Calais and Geoparser.io); and (3) a semi-supervised machine learning classifier developed by the author (Newsmap). Newsmap substitutes manual coding of news stories with dictionary-based labelling in the creation of large training sets to extract large numbers of geographical words without human involvement and it also identifies multi-word names to reduce the ambiguity of the geographical traits fully automatically. The evaluation of classification accuracy of the three types of methods against 5000 human-coded news summaries reveals that Newsmap outperforms the geographical information extraction systems in overall accuracy, while the simple keyword matching suffers from ambiguity of place names in countries with ambiguous place names.

本文言語English
ページ(範囲)294-309
ページ数16
ジャーナルDigital Journalism
6
3
DOI
出版ステータスPublished - 2018 3月 16
外部発表はい

ASJC Scopus subject areas

  • 通信

フィンガープリント

「Newsmap: A semi-supervised approach to geographical news classification」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル