Noether's problem and Q-generic polynomials for the normalizer of the 8-cycle in S8and its subgroups

Ki Ichiro Hashimoto*, Akinari Hoshi, Yuichi Rikuna

*この研究の対応する著者

研究成果査読

6 被引用数 (Scopus)

抄録

We study Noether's problem for various subgroups H of the normalizer of a group Cs generated by an 8-cycle in 5s, the symmetric group of degree 8, in three aspects according to the way they act on rational function fields, i.e., ℚ(X0,. . ., X7), ℚ(x1,. . .,x 4), and ℚ(x, y). We prove that it has affirmative answers for those H containing C8 properly and derive a ℚ-generic polynomial with four parameters for each H. On the other hand, it is known in connection to the negative answer to the same problem for C8/ℚ that there does not exist a ℚ-generic polynomial for C8. This leads us to the question whether and how one can describe, for a given field K of characteristic zero, the set of C8-extensions L/K. One of the main results of this paper gives an answer to this question.

本文言語English
ページ(範囲)1153-1183
ページ数31
ジャーナルMathematics of Computation
77
262
DOI
出版ステータスPublished - 2008 4
外部発表はい

ASJC Scopus subject areas

  • 代数と数論
  • 計算数学
  • 応用数学

フィンガープリント

「Noether's problem and Q-generic polynomials for the normalizer of the 8-cycle in S<sub>8</sub>and its subgroups」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル