Non-regular estimation theory for piecewise continuous spectral densities

Masanobu Taniguchi*

*この研究の対応する著者

研究成果: Article査読

2 被引用数 (Scopus)

抄録

For a class of Gaussian stationary processes, the spectral density fθ (λ), θ = (τ, η), is assumed to be a piecewise continuous function, where τ describes the discontinuity points, and the piecewise spectral forms are smoothly parameterized by η. Although estimating the parameter θ is a very fundamental problem, there has been no systematic asymptotic estimation theory for this problem. This paper develops the systematic asymptotic estimation theory for piecewise continuous spectra based on the likelihood ratio for contiguous parameters. It is shown that the log-likelihood ratio is not locally asymptotic normal (LAN). Two estimators for θ, i.e., the maximum likelihood estimator over(θ, ̂)ML and the Bayes estimator over(θ, ̂)B, are introduced. Then the asymptotic distributions of over(θ, ̂)ML and over(θ, ̂)B are derived and shown to be non-normal. Furthermore we observe that over(θ, ̂)B is asymptotically efficient, but over(θ, ̂)ML is not so. Also various versions of step spectra are considered.

本文言語English
ページ(範囲)153-170
ページ数18
ジャーナルStochastic Processes and their Applications
118
2
DOI
出版ステータスPublished - 2008 2月

ASJC Scopus subject areas

  • 統計学および確率
  • モデリングとシミュレーション
  • 応用数学

フィンガープリント

「Non-regular estimation theory for piecewise continuous spectral densities」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル