抄録
Every stationary subgroup of the quasiconformal mapping class group of a Riemann surface acts on the Teichmüller space discontinuously if the surface satisfies a certain geometric condition. In this paper, we construct such a Riemann surface that the quasiconformal mapping class group is non-stationary but it still acts on the Teichmüller space discontinuously.
本文言語 | English |
---|---|
ページ(範囲) | 173-185 |
ページ数 | 13 |
ジャーナル | Osaka Journal of Mathematics |
巻 | 44 |
号 | 1 |
出版ステータス | Published - 2007 3月 1 |
外部発表 | はい |
ASJC Scopus subject areas
- 数学 (全般)