Nonhomogeneous boundary value problems for stationary navier-stokes equations in a multiply connected bounded domain

Hideo Kozono, Taku Yanagisawa

研究成果: Article査読

5 被引用数 (Scopus)

抄録

We consider the stationary Navier-Stokes equations on a multiply connected bounded domain Ω in R{double-struck}n for n = 2; 3 under nonhomogeneous boundary conditions. We present a new sufficient condition for the existence of weak solutions. This condition is a variational estimate described in terms of the harmonic part of solenoidal extensions of the given boundary data; we prove it by using the Helmholtz-Weyl decomposition of vector fields over Ω satisfying adequate boundary conditions. We also study the validity of Leray's inequality for various assumptions about the symmetry of Ω.

本文言語English
ページ(範囲)127-150
ページ数24
ジャーナルPacific Journal of Mathematics
243
1
DOI
出版ステータスPublished - 2009 11
外部発表はい

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント 「Nonhomogeneous boundary value problems for stationary navier-stokes equations in a multiply connected bounded domain」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル