Nonlinear Acoustics: Blackstock–Crighton Equations with a Periodic Forcing Term

Aday Celik, Mads Kyed*

*この研究の対応する著者

研究成果: Article査読

2 被引用数 (Scopus)

抄録

Blackstock–Crighton equations describe the motion of a viscous, heat-conducting, compressible fluid. They are used as models for acoustic wave propagation in a medium in which both nonlinear and dissipative effects are taken into account. In this article, a mathematical analysis of the Blackstock–Crighton equations with a time-periodic forcing term is carried out. For time-periodic data sufficiently restricted in size it is shown that a time-periodic solution of the same period always exists. This implies that the dissipative effects are sufficient to avoid resonance within the Blackstock–Crighton models. The equations are considered in a bounded domain with both non-homogeneous Dirichlet and Neumann boundary values. Existence of a solution is obtained via a fixed-point argument based on appropriate a priori estimates for the linearized equations.

本文言語English
論文番号45
ジャーナルJournal of Mathematical Fluid Mechanics
21
3
DOI
出版ステータスPublished - 2019 9 1
外部発表はい

ASJC Scopus subject areas

  • 数理物理学
  • 凝縮系物理学
  • 計算数学
  • 応用数学

フィンガープリント

「Nonlinear Acoustics: Blackstock–Crighton Equations with a Periodic Forcing Term」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル