Nonlinear model predictive control utilizing a neuro-fuzzy predictor

Jonas B. Waller, Jinglu Hu, Kotaro Hirasawa

研究成果: Article査読

7 被引用数 (Scopus)


This paper applies a quasi-ARMAX modeling technique, recently presented in the literature, to a process control framework. The use of this quasi-ARMAX modeling technique in nonlinear model predictive control (NMPC) formulations applied to simple nonlinear process control examples is investigated. The quasi-ARMAX predictor can be interpreted as a neuro-fuzzy predictor, and this neuro-fuzzy predictor is computationally straightforward and has showed excellent prediction capabilities. The predictor is thus well suited for NMPC purposes. Furthermore, the parameters of the neuro-fuzzy model can be argued to have explicit meaning, thus making the procedure of tuning the NMPC system more transparent when using the neuro-fuzzy predictor.

ジャーナルProceedings of the IEEE International Conference on Systems, Man and Cybernetics
出版ステータスPublished - 2000

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Hardware and Architecture

フィンガープリント 「Nonlinear model predictive control utilizing a neuro-fuzzy predictor」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。