Nonlinear model predictive control utilizing a neuro-fuzzy predictor

Jonas B. Waller, Jinglu Hu, Kotaro Hirasawa

研究成果: Article

7 引用 (Scopus)

抜粋

This paper applies a quasi-ARMAX modeling technique, recently presented in the literature, to a process control framework. The use of this quasi-ARMAX modeling technique in nonlinear model predictive control (NMPC) formulations applied to simple nonlinear process control examples is investigated. The quasi-ARMAX predictor can be interpreted as a neuro-fuzzy predictor, and this neuro-fuzzy predictor is computationally straightforward and has showed excellent prediction capabilities. The predictor is thus well suited for NMPC purposes. Furthermore, the parameters of the neuro-fuzzy model can be argued to have explicit meaning, thus making the procedure of tuning the NMPC system more transparent when using the neuro-fuzzy predictor.

元の言語English
ページ(範囲)3459-3464
ページ数6
ジャーナルProceedings of the IEEE International Conference on Systems, Man and Cybernetics
5
DOI
出版物ステータスPublished - 2000 1 1
外部発表Yes

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Hardware and Architecture

フィンガープリント Nonlinear model predictive control utilizing a neuro-fuzzy predictor' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用