Nonlinear scattering with nonlocal interaction

Hayato Nawa, Tohru Ozawa

研究成果: Article査読

30 被引用数 (Scopus)

抄録

We consider the scattering problem for the Hartree type equation in ℝn with n≧2: {Mathematical expression} where {Mathematical expression} and * denotes the convolution in ℝn. We prove the existence of wave operators in H0, k = {ψ∈L2(ℝn);|x|kψ∈L2(ℝn)} for any positive integer k under the assumption 1<γ1, γ2<2. This is an optimal result in the sense that the existence of wave operators breaks down if min (γ1, γ2≢1. The case where 1<γ1, γ2 = 2 is also treated according to the sign of λ2.

本文言語English
ページ(範囲)259-275
ページ数17
ジャーナルCommunications in Mathematical Physics
146
2
DOI
出版ステータスPublished - 1992 5 1
外部発表はい

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics

フィンガープリント 「Nonlinear scattering with nonlocal interaction」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル