Nonlinear stability of Ekman boundary layers

Matthias Hess*, Matthias Georg Hieber, Alex Mahalov, Jürgen Saal

*この研究の対応する著者

研究成果: Article査読

12 被引用数 (Scopus)

抄録

Consider the initial value problem for the three-dimensional Navier-Stokes equations with rotation in the half-space 3+ subject to Dirichlet boundary conditions as well as the Ekman spiral, which is a stationary solution to the above equations. It is proved that the Ekman spiral is nonlinearly stable with respect to L2-perturbations provided that the corresponding Reynolds number is small enough. Moreover, the decay rate can be computed in terms of the decay of the corresponding linear problem.

本文言語English
ページ(範囲)691-706
ページ数16
ジャーナルBulletin of the London Mathematical Society
42
4
DOI
出版ステータスPublished - 2010 8月
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Nonlinear stability of Ekman boundary layers」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル