Nonlinear stability of Ekman boundary layers

Matthias Hess, Matthias Georg Hieber, Alex Mahalov, Jürgen Saal

研究成果: Article

10 引用 (Scopus)

抜粋

Consider the initial value problem for the three-dimensional Navier-Stokes equations with rotation in the half-space 3+ subject to Dirichlet boundary conditions as well as the Ekman spiral, which is a stationary solution to the above equations. It is proved that the Ekman spiral is nonlinearly stable with respect to L2-perturbations provided that the corresponding Reynolds number is small enough. Moreover, the decay rate can be computed in terms of the decay of the corresponding linear problem.

元の言語English
ページ(範囲)691-706
ページ数16
ジャーナルBulletin of the London Mathematical Society
42
発行部数4
DOI
出版物ステータスPublished - 2010 8
外部発表Yes

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント Nonlinear stability of Ekman boundary layers' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用