Nonparametric Bayesian Analysis of Hazard Rate Functions using the Gamma Process Prior

Richard Arnold, Stefanka Chukova, Yu Hayakawa

研究成果: Conference contribution

抄録

When failure time data are modelled using an inhomogeneous Poisson process, it is necessary to model the underlying hazard rate function λ(t). The most common approaches to the problem either select some parametric form for λ(t), or alternatively-conditional on some collected data set- A pproximate it using the non-parametric Kaplan-Meier estimator. In this paper we present simulation and inference for a non-parametric hazard rate function drawn from a Gamma Process Prior. We use a gamma-scaled Dirichlet Process prior to implement the Gamma Process prior, and construct a Markov Chain Monte Carlo sampler to carry out inference. We demon-strate the methodology with the simulation of a process with an increasing failure rate.

本文言語English
ホスト出版物のタイトル2020 Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modeling, APARM 2020
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781728171029
DOI
出版ステータスPublished - 2020 8月
イベント2020 Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modeling, APARM 2020 - Vancouver, Canada
継続期間: 2020 8月 202020 8月 23

出版物シリーズ

名前2020 Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modeling, APARM 2020

Conference

Conference2020 Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modeling, APARM 2020
国/地域Canada
CityVancouver
Period20/8/2020/8/23

ASJC Scopus subject areas

  • エネルギー工学および電力技術
  • 機械工学
  • 安全性、リスク、信頼性、品質管理
  • モデリングとシミュレーション

フィンガープリント

「Nonparametric Bayesian Analysis of Hazard Rate Functions using the Gamma Process Prior」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル