TY - JOUR
T1 - Nonparametric bayesian dereverberation of power spectrograms based on infinite-order autoregressive processes
AU - Maezawa, Akira
AU - Itoyama, Katsutoshi
AU - Yoshii, Kazuyoshi
AU - Okuno, Hiroshi G.
PY - 2014/12/1
Y1 - 2014/12/1
N2 - This paper describes a monaural audio dereverberation method that operates in the power spectrogram domain. The method is robust to different kinds of source signals such as speech or music. Moreover, it requires little manual intervention, including the complexity of room acoustics. The method is based on a non-conjugate Bayesian model of the power spectrogram. It extends the idea of multi-channel linear prediction to the power spectrogram domain, and formulates a model of reverberation as a non-negative, infinite-order autoregressive process. To this end, the power spectrogram is interpreted as a histogram count data, which allows a nonparametric Bayesian model to be used as the prior for the autoregressive process, allowing the effective number of active components to grow, without bound, with the complexity of data. In order to determine the marginal posterior distribution, a convergent algorithm, inspired by the variational Bayes method, is formulated. It employs the minorization-maximization technique to arrive at an iterative, convergent algorithm that approximates the marginal posterior distribution. Both objective and subjective evaluations show advantage over other methods based on the power spectrum.We also apply the method to amusic information retrieval task and demonstrate its effectiveness.
AB - This paper describes a monaural audio dereverberation method that operates in the power spectrogram domain. The method is robust to different kinds of source signals such as speech or music. Moreover, it requires little manual intervention, including the complexity of room acoustics. The method is based on a non-conjugate Bayesian model of the power spectrogram. It extends the idea of multi-channel linear prediction to the power spectrogram domain, and formulates a model of reverberation as a non-negative, infinite-order autoregressive process. To this end, the power spectrogram is interpreted as a histogram count data, which allows a nonparametric Bayesian model to be used as the prior for the autoregressive process, allowing the effective number of active components to grow, without bound, with the complexity of data. In order to determine the marginal posterior distribution, a convergent algorithm, inspired by the variational Bayes method, is formulated. It employs the minorization-maximization technique to arrive at an iterative, convergent algorithm that approximates the marginal posterior distribution. Both objective and subjective evaluations show advantage over other methods based on the power spectrum.We also apply the method to amusic information retrieval task and demonstrate its effectiveness.
KW - Dereverberation
KW - Minorization maximization
KW - Nonparameteric Bayes
UR - http://www.scopus.com/inward/record.url?scp=84921764278&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84921764278&partnerID=8YFLogxK
U2 - 10.1109/TASLP.2014.2355772
DO - 10.1109/TASLP.2014.2355772
M3 - Article
AN - SCOPUS:84921764278
SN - 2329-9290
VL - 22
SP - 1918
EP - 1930
JO - IEEE/ACM Transactions on Speech and Language Processing
JF - IEEE/ACM Transactions on Speech and Language Processing
IS - 12
M1 - 6894190
ER -