Normal form and global solutions for the Klein-Gordon-Zakharov equations

Tohru Ozawa, K. Tsutaya, Y. Tsutsumi

研究成果: Article

15 引用 (Scopus)

抜粋

In this paper we study the global existence and asymptotic behavior of solutions for the Cauchy problem of the Klein-Gordon-Zakharov equations in three space dimensions. We prove that for small initial data, there exist the unique global solutions of the Klein-Gordon-Zakharov equations. We also show that these solutions approach asymptotically the free solutions as t → ∞. Our proof is based on the method of normal forms introduced by Shatah [12], which transforms the original system with quadratic nonlinearity into a new system with cubic nonlinearity.

元の言語English
ページ(範囲)459-503
ページ数45
ジャーナルAnnales de l'Institut Henri Poincare (C) Analyse Non Lineaire
12
発行部数4
DOI
出版物ステータスPublished - 2016 7 1
外部発表Yes

ASJC Scopus subject areas

  • Analysis
  • Mathematical Physics

フィンガープリント Normal form and global solutions for the Klein-Gordon-Zakharov equations' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用