TY - JOUR
T1 - Novel approach of modeling load duration curve for generation expansion planning based on Hill's function
AU - Kato, Moritoshi
AU - Zhou, Yicheng
AU - Kang, Chongqing
AU - Yokoyama, Ryuichi
PY - 2011/7
Y1 - 2011/7
N2 - A novel approach of modeling the load duration curve (LDC) based on Hill's function is proposed in this article. On the contrary to traditional models, the proposed model is completely an analytical one which can be determined by historic load data. This method is effective in calculating efficiency as well as controlling errors and it is quite simple in application because the model has only a few parameters, each of which has a definite economic or fiscal meaning. Based on the historic model, this method is easy and accurate in estimating the LDC model for a future year by changing the parameters of Hill's function, where only the peak load and the total demand in each year may be given. Results on the load data from IEEE reliability test system (IEEE-RTS), PJM and Beijing Electric Power Corporation (BEPC) are presented to demonstrate the effectiveness of the proposed model. Numerical examples show that the modeling errors in both peak load and total demand, which are key indices for generation expansion planning and reliability evaluation, are less than 1%. The LDC model for a future year is also accurately estimated in these examples.
AB - A novel approach of modeling the load duration curve (LDC) based on Hill's function is proposed in this article. On the contrary to traditional models, the proposed model is completely an analytical one which can be determined by historic load data. This method is effective in calculating efficiency as well as controlling errors and it is quite simple in application because the model has only a few parameters, each of which has a definite economic or fiscal meaning. Based on the historic model, this method is easy and accurate in estimating the LDC model for a future year by changing the parameters of Hill's function, where only the peak load and the total demand in each year may be given. Results on the load data from IEEE reliability test system (IEEE-RTS), PJM and Beijing Electric Power Corporation (BEPC) are presented to demonstrate the effectiveness of the proposed model. Numerical examples show that the modeling errors in both peak load and total demand, which are key indices for generation expansion planning and reliability evaluation, are less than 1%. The LDC model for a future year is also accurately estimated in these examples.
KW - Generation expansion planning
KW - Hill function
KW - Levenberg-Marquardt method
KW - Load duration curve
UR - http://www.scopus.com/inward/record.url?scp=79957957671&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79957957671&partnerID=8YFLogxK
U2 - 10.1002/tee.20661
DO - 10.1002/tee.20661
M3 - Article
AN - SCOPUS:79957957671
SN - 1931-4973
VL - 6
SP - 304
EP - 310
JO - IEEJ Transactions on Electrical and Electronic Engineering
JF - IEEJ Transactions on Electrical and Electronic Engineering
IS - 4
ER -