Novel pathways for elimination of chlorine atoms from growing Si(100) surfaces in CVD reactors

Nilson Kunioshi, Sho Hagino, Akio Fuwa, Katsunori Yamaguchi

    研究成果: Article

    2 引用 (Scopus)

    抜粋

    Reactions leading to elimination of chlorine atoms from growing Si(100) surfaces were simulated using clusters of silicon atoms of different sizes and shapes, and at the UB3LYP/6–31 g(d,p) level of theory. The reactions of type SiCl2(s) + 2 H2(g), where (s) indicates an adsorbed species at the surface and (g) a gas-phase species, were found to proceed in two steps: SiCl2(s) + H2(g) → SiHCl(s) + HCl(g) and SiHCl(s) + H2(g) → SiH2(s) + HCl(g), each having activation energies around 55 kcal/mol, a value which is comparable to experimental values published in the literature. In addition, the results suggested that H-passivation of Si(100) surfaces support reactions leading to canonical epitaxial growth, providing a plausible explanation for the convenience of passivating the surfaces prior to silicon deposition. The reactions analyzed here can therefore be seen as important steps in the mechanism of epitaxial growth of Si(100) surfaces.

    元の言語English
    ページ(範囲)773-779
    ページ数7
    ジャーナルApplied Surface Science
    441
    DOI
    出版物ステータスPublished - 2018 5 31

    ASJC Scopus subject areas

    • Surfaces, Coatings and Films

    フィンガープリント Novel pathways for elimination of chlorine atoms from growing Si(100) surfaces in CVD reactors' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用