Nucleation and growth of copper nanoparticles on silicon surfaces

A. Singh, K. Luening, S. Brennan, T. Homma, N. Kubo, P. Pianetta

研究成果: Conference article

3 被引用数 (Scopus)

抄録

The recent adoption of copper interconnect technology by the semiconductor industry, has led to great interest in understanding the mechanisms of copper metal deposition onto silicon wafer surfaces from ultra pure water (UPW) solutions. We have studied these processes by using total reflection x-ray fluorescence (TXRF) and x-ray absorption near edge spectroscopy (XANES) in a grazing incidence geometry to determine the surface concentration and chemical state of copper atoms on intentionally contaminated Si surfaces. These measurements established that in deoxygenated UPW, copper is deposited on the silicon surface in the form of metallic nanoparticles with sizes up to 16nm. However, in non-deoxygenated UPW, the copper is incorporated uniformly into the silicon surface oxide as Cu oxide.

本文言語English
ページ(範囲)714-716
ページ数3
ジャーナルPhysica Scripta T
T115
DOI
出版ステータスPublished - 2005
イベント12th X-ray Absorption Fine Structure International Conference, XAFS12 - Malmo, Sweden
継続期間: 2003 6 232003 6 27

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Mathematical Physics
  • Condensed Matter Physics

フィンガープリント 「Nucleation and growth of copper nanoparticles on silicon surfaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル