Numerical method for verifying the existence and local uniqueness of a double turning point for a radially symmetric solution of the perturbed Gelfand equation

Teruya Minamoto, Mitsuhiro T. Nakao

研究成果: Article査読

6 被引用数 (Scopus)

抄録

A numerical verification method to confirm the existence and local uniqueness of a double turning point for a radially symmetric solution of the perturbed Gelfand equation is presented. Using certain systems of equations corresponding to a double turning point, we derive a sufficient condition for its existence whose satisfaction can be verified computationally. We describe verification procedures and give a numerical example as a demonstration.

本文言語English
ページ(範囲)177-185
ページ数9
ジャーナルJournal of Computational and Applied Mathematics
202
2
DOI
出版ステータスPublished - 2007 5 15
外部発表はい

ASJC Scopus subject areas

  • 応用数学
  • 計算数学
  • 数値解析

フィンガープリント

「Numerical method for verifying the existence and local uniqueness of a double turning point for a radially symmetric solution of the perturbed Gelfand equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル