抄録
A theoretical model based on a nonlinear ordinary differential equation was developed, which can estimate the atomization process of fuel droplets after the wall impingement. The phase-space trajectory of the equation for droplet deformation and oscillation varies from oval to parabola with increasing impact velocity. Four different regimes for droplet diameter distribution are derived from this complex feature of the equation. The amount of liquid film remaining on the wall and the number of droplets are estimated from the related mass and energy conservation laws. The model is called the Oval-Parabola Trajectories (OPT) model in the present report. Comparisons made with some fundamental experimetal data confirm that this mathematical model is effective in a velocity range from 2m/s to 40m/s and in a diameter range below 300 micrometers. A previously reported numerical code based on the multi-level formulation and the renormalization group theory is combined with the OPT model and the TAB model. The visualizations reemerged by computations indicate that secondary atomization behavior on valve surfaces plays a significant role in the fuel mixture formation in the cylinder of spark-ignition engine.
本文言語 | English |
---|---|
ジャーナル | SAE Technical Papers |
DOI | |
出版ステータス | Published - 1994 1月 1 |
外部発表 | はい |
イベント | 1994 SAE International Congress and Exposition - Detroit, MI, United States 継続期間: 1994 2月 28 → 1994 3月 3 |
ASJC Scopus subject areas
- 自動車工学
- 安全性、リスク、信頼性、品質管理
- 汚染
- 産業および生産工学