Numerical prediction of fuel secondary atomization behavior in si engine based on the Oval-Parabola Trajectories (OPT) model

Ken Naitoh*, Yasuo Takagi, Hiroko Kokita, Kunio Kuwahara

*この研究の対応する著者

研究成果: Conference article査読

18 被引用数 (Scopus)

抄録

A theoretical model based on a nonlinear ordinary differential equation was developed, which can estimate the atomization process of fuel droplets after the wall impingement. The phase-space trajectory of the equation for droplet deformation and oscillation varies from oval to parabola with increasing impact velocity. Four different regimes for droplet diameter distribution are derived from this complex feature of the equation. The amount of liquid film remaining on the wall and the number of droplets are estimated from the related mass and energy conservation laws. The model is called the Oval-Parabola Trajectories (OPT) model in the present report. Comparisons made with some fundamental experimetal data confirm that this mathematical model is effective in a velocity range from 2m/s to 40m/s and in a diameter range below 300 micrometers. A previously reported numerical code based on the multi-level formulation and the renormalization group theory is combined with the OPT model and the TAB model. The visualizations reemerged by computations indicate that secondary atomization behavior on valve surfaces plays a significant role in the fuel mixture formation in the cylinder of spark-ignition engine.

本文言語English
ジャーナルSAE Technical Papers
DOI
出版ステータスPublished - 1994 1 1
外部発表はい
イベント1994 SAE International Congress and Exposition - Detroit, MI, United States
継続期間: 1994 2 281994 3 3

ASJC Scopus subject areas

  • 自動車工学
  • 安全性、リスク、信頼性、品質管理
  • 汚染
  • 産業および生産工学

フィンガープリント

「Numerical prediction of fuel secondary atomization behavior in si engine based on the Oval-Parabola Trajectories (OPT) model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル