Numerical solution of an unsteady Earth's mantle convection problem by a stabilized finite element method

Atsushi Suzuki, Masahisa Tabata, Satoru Honda

研究成果: Conference contribution

3 被引用数 (Scopus)

抄録

A finite element code is developed for a thermal convection problem of infinite Prandtl number Boussinesq fluid subject to slip velocity boundary conditions. The problem is a fundamental mathematical model of the Earth's mantle movement. It is described by a couple of the Stokes equations and the convection-diffusion equation combined by buoyancy and convection terms. A stabilized finite element scheme with P1/P1/P1 element is employed. Some numerical computations in a three-dimensional spherical shell with Rayleigh number 10 4 are performed. Time histories of the Nusselt numbers and the root-mean-square velocities are computed, which are observed to be convergent as the mesh subdivisions become finer.

本文言語English
ホスト出版物のタイトルTheoretical and Applied Mechanics
ページ371-378
ページ数8
48
出版ステータスPublished - 1999
外部発表はい
イベントProceedings of the 1999 48th Japan National Congress on Theoretical and Applied Mechanics (NCTAM) - Tokyo, Jpn
継続期間: 1999 1 251999 1 27

Other

OtherProceedings of the 1999 48th Japan National Congress on Theoretical and Applied Mechanics (NCTAM)
CityTokyo, Jpn
Period99/1/2599/1/27

ASJC Scopus subject areas

  • Mechanics of Materials

フィンガープリント 「Numerical solution of an unsteady Earth's mantle convection problem by a stabilized finite element method」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル