Numerical Verifications for Eigenvalues of Second-Order Elliptic Operators

M. T. Nakao, N. Yamamoto, K. Nagatou

研究成果: Article査読

17 被引用数 (Scopus)

抄録

In this paper, we consider a numerical technique to verify the exact eigenvalues and eigenfunctions of second-order elliptic operators in some neighborhood of their approximations. This technique is based on Nakao's method [9] using the Newton-like operator and the error estimates for the C0 finite element solution. We construct, in computer, a set containing solutions which satisfies the hypothesis of Schauder's fixed point theorem for compact map on a certain Sobolev space. Moreover, we propose a method to verify the eigenvalue which has the smallest absolute value. A numerical example is presented.

本文言語English
ページ(範囲)307-320
ページ数14
ジャーナルJapan Journal of Industrial and Applied Mathematics
16
3
出版ステータスPublished - 1999 10
外部発表はい

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

フィンガープリント 「Numerical Verifications for Eigenvalues of Second-Order Elliptic Operators」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル