Observability transitions in correlated networks

Takehisa Hasegawa*, Taro Takaguchi, Naoki Masuda

*この研究の対応する著者

研究成果査読

11 被引用数 (Scopus)

抄録

Yang, Wang, and Motter analyzed a model for network observability transitions in which a sensor placed on a node makes the node and the adjacent nodes observable. The size of the connected components comprising the observable nodes is a major concern of the model. We analyze this model in random heterogeneous networks with degree correlation. With numerical simulations and analytical arguments based on generating functions, we find that negative degree correlation makes networks more observable. This result holds true both when the sensors are placed on nodes one by one in a random order and when hubs preferentially receive the sensors. Finally, we numerically optimize networks with a fixed degree sequence with respect to the size of the largest observable component. Optimized networks have negative degree correlation induced by the resulting hub-repulsive structure; the largest hubs are rarely connected to each other, in contrast to the rich-club phenomenon of networks.

本文言語English
論文番号042809
ジャーナルPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
88
4
DOI
出版ステータスPublished - 2013 10 14
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 統計学および確率
  • 凝縮系物理学

フィンガープリント

「Observability transitions in correlated networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル