On a generalized resolvent estimate for the Stokes system with Robin boundary condition

Yoshihiro Shibata*, Rieko Shimada

*この研究の対応する著者

研究成果: Article査読

38 被引用数 (Scopus)

抄録

We prove a generalized resolvent estimate of Stokes equations with nonhomogeneous Robin boundary condition and divergence condition in the L q framework (1 < q < ∞) in a domain of Rn (n ≧ 2) that is a bounded domain or the exterior of a bounded domain. The Robin condition consists of two conditions: v · u = 0 and au + β(T(u, p)v -(T(u, p)u, v)v) = h on the boundary of the domain with α, β ≧ 0 and α + β= 1, where u denotes a velocity vector, p a pressure, T(u, p) the stress tensor for the Stokes flow, and v the unit outer normal to the boundary of the domain. It presents the slip condition when β=1 and the non-slip one when α = 1, respectively.

本文言語English
ページ(範囲)469-519
ページ数51
ジャーナルJournal of the Mathematical Society of Japan
59
2
DOI
出版ステータスPublished - 2007 4月

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「On a generalized resolvent estimate for the Stokes system with Robin boundary condition」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル