On a Resolvent Estimate of a System of Laplace Operators with Perfect Wall Condition

T. Akiyama, Y. Shibata, M. Tsutsumi, H. Kasai

研究成果: Article査読

9 被引用数 (Scopus)

抄録

This paper is concerned with the study of the system of Laplace operators with perfect wall condition in the Lpframework. Our study includes a bounded domain, an exterior domain and a domain having noncompact boundary such as a perturbed half space. A direct application of our study is to prove the analyticity of the semigroup corresponding to the Maxwell equation of parabolic type, which appears as a linearized equation in the study of the nonstationary problem concerning the Ginzburg-Landau-Maxwell equation describing the Ginzburg-Landau model for superconductivity, the magnetohydrodynamic equation and the Navier-Stokes equation with Neumann boundary condition. And also, our theory is applicable to some solvability of the stationary problem of these nonlinear equations in the Lpframework.

本文言語English
ページ(範囲)361-394
ページ数34
ジャーナルFunkcialaj Ekvacioj
47
3
DOI
出版ステータスPublished - 2004

ASJC Scopus subject areas

  • 分析
  • 代数と数論
  • 幾何学とトポロジー

フィンガープリント

「On a Resolvent Estimate of a System of Laplace Operators with Perfect Wall Condition」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル