On central limit theorems in stochastic geometry for add-one cost stabilizing functionals

Khanh Duy Trinh*

*この研究の対応する著者

研究成果: Article査読

5 被引用数 (Scopus)

抄録

We establish central limit theorems for general functionals on binomial point processes and their Poissonized version, which extends the results of Penrose–Yukich (Ann. Appl. Probab. 11(4), 1005–1041 (2001)) to the inhomogeneous case. Here functionals are required to be strongly stabilizing for add-one cost on homogeneous Poisson point processes and to satisfy some moments conditions. As an application, a central limit theorem for Betti numbers of random geometric complexes in the subcritical regime is derived.

本文言語English
ページ(範囲)1-15
ページ数15
ジャーナルElectronic Communications in Probability
24
DOI
出版ステータスPublished - 2019

ASJC Scopus subject areas

  • 統計学および確率
  • 統計学、確率および不確実性

フィンガープリント

「On central limit theorems in stochastic geometry for add-one cost stabilizing functionals」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル