On Dranishnikov's cell-like resolution

Akira Koyama*, Katsuya Yokoi

*この研究の対応する著者

研究成果: Article査読

抄録

We prove the following theorem: Theorem 1. For a compactum X with c-dimℤ/p X ≤ n and c-dimℤ(q) X ≤ n for some distinct prime numbers p, q, and c-dim X ≤ n + 1, where n > 1, there exists an (n + 1)-dimensional compactum Z with c-dimℤ/p Z ≤ n, c-dimℤ(q) Z ≤ n and a cell-like map f : Z → X. Moreover, giving the following theorem, we note that Theorem 1 cannot be true in the case of n = 1. Theorem 2. For every pair p, q of distinct prime numbers there exists an infinite-dimensional compactum X such that c-dimℤ/p X = 1, c-dimℤ(q), X = 1 and c-dim X = 2.

本文言語English
ページ(範囲)87-106
ページ数20
ジャーナルTopology and its Applications
113
1-3
DOI
出版ステータスPublished - 2001
外部発表はい

ASJC Scopus subject areas

  • 幾何学とトポロジー

フィンガープリント

「On Dranishnikov's cell-like resolution」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル