On fractional Schrodinger equations with Hartree type nonlinearitiesy

Silvia Cingolani*, Marco Gallo, Kazunaga Tanaka

*この研究の対応する著者

研究成果: Article査読

抄録

Goal of this paper is to study the following doubly nonlocal equation (equation presented) in the case of general nonlinearities F 2 C1(R) of Berestycki-Lions type, when N ≥ 2 and μ > 0 is fixed. Here (-Δ)s, s ∈(0; 1), denotes the fractional Laplacian, while the Hartree-type term is given by convolution with the Riesz potential Iα, α 2 (0; N). We prove existence of ground states of (P). Furthermore we obtain regularity and asymptotic decay of general solutions, extending some results contained in [23, 61].

本文言語English
ページ(範囲)1-33
ページ数33
ジャーナルMathematics In Engineering
4
6
DOI
出版ステータスPublished - 2022

ASJC Scopus subject areas

  • 応用数学
  • 数理物理学
  • 分析

フィンガープリント

「On fractional Schrodinger equations with Hartree type nonlinearitiesy」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル