On fully nonlinear PDEs derived from variational problems of Lp norms

Toshihiro Ishibashi*, Shigeaki Koike

*この研究の対応する著者

研究成果: Article査読

27 被引用数 (Scopus)

抄録

The p-Laplace operator arises in the Euler-Lagrange equation associated with a minimizing problem which contains the Lpnorm of the gradient of functions. However, when we adapt a different Lpnorm equivalent to the standard one in the minimizing problem, a different p-Laplace-type operator appears in the corresponding Euler-Lagrange equation. First, we derive the limit PDE which the limit function of minimizers of those, as p → ∞, satisfies in the viscosity sense. Then we investigate the uniqueness and existence of viscosity solutions of the limit PDE.

本文言語English
ページ(範囲)545-569
ページ数25
ジャーナルSIAM Journal on Mathematical Analysis
33
3
DOI
出版ステータスPublished - 2001
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 計算数学
  • 応用数学

フィンガープリント

「On fully nonlinear PDEs derived from variational problems of Lp norms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル