On radial solutions of semi-relativistic Hartree equations

Yonggeun Cho, Tohru Ozawa

研究成果: Article査読

7 被引用数 (Scopus)

抄録

We consider the semi-relativistic Hartree type equation with nonlocal nonlinearity F(u) = λ(|x| * |u| 2)u,0 < γ < n,n ≥ 1. In [2, 3], the global well-posedness (GWP) was shown for the value of γ ∈ (0, 2n/n+1),n ≥ 2 with large data and γ ∈ (2, n), n ≥ 3 with small data. In this paper" we extend the previous GWP result to the case for γ ∈ (1, 2n-1/n),n ≥ 2 with radially symmetric large data. Solutions in a weighted Sobolev space are also studied.

本文言語English
ページ(範囲)71-82
ページ数12
ジャーナルDiscrete and Continuous Dynamical Systems - Series S
1
1
DOI
出版ステータスPublished - 2008 3
外部発表はい

ASJC Scopus subject areas

  • Analysis
  • Discrete Mathematics and Combinatorics
  • Applied Mathematics

フィンガープリント 「On radial solutions of semi-relativistic Hartree equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル