On selection of the order of the spectral density model for a stationary process

研究成果: Article

13 引用 (Scopus)

抜粋

Let {X(t)} be a stationary process with mean zero and spectral density g(x). We shall use a kth order parametric spectral model f τ(k) (x) for this process. Without Gaussianity we can obtain an estiamte of τ(k), say ĝt(k), by maximizing the quasi-Gaussian likelihood of this model. We can then construct the best linear predictor of X(t), which is computed on the basis of the estimated spectral density f ĝt(k) (x). An asymptotic lower bound of the mean square error of the estimated predictor is obtained. The bound is attained if k is selected by Akaike's information criterion.

元の言語English
ページ(範囲)401-419
ページ数19
ジャーナルAnnals of the Institute of Statistical Mathematics
32
発行部数1
DOI
出版物ステータスPublished - 1980 12 1
外部発表Yes

ASJC Scopus subject areas

  • Statistics and Probability

フィンガープリント On selection of the order of the spectral density model for a stationary process' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用