On skinny stationary subsets of Pkλ

Yo Matsubara, Toshimichi Usuba

研究成果: Article

1 引用 (Scopus)


We introduce the notion of skinniness for subsets ofP ë and its variants, namely skinnier and skinniest. We show that under some cardinal arithmetical assumptions, precipitousness or 2ë-saturation of NSë | X, where NSë denotes the non-stationary ideal over Pë, implies the existence of a skinny stationary subset of X. We also show that if ë is a singular cardinal, then there is no skinnier stationary subset of Pë. Furthermore, if ë is a strong limit singular cardinal, there is no skinny stationary subset of Pë. Combining these results, we show that if ë is a strong limit singular cardinal, then NSë | X can satisfy neither precipitousness nor 2ë-saturation for every stationary X Pë. We also indicate that ë(Eë <), where Eë < def = { < ë cf() < }, is equivalent to the existence of a skinnier (or skinniest) stationary subset of Pë under some cardinal arithmetical hypotheses.

ジャーナルJournal of Symbolic Logic
出版物ステータスPublished - 2013 6 1

ASJC Scopus subject areas

  • Philosophy
  • Logic

フィンガープリント On skinny stationary subsets of Pkλ' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用