On square roots of the Haar state on compact quantum groups

Uwe Franz, Adam Skalski*, Reiji Tomatsu

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

The paper is concerned with the extension of the classical study of probability measures on a compact group which are square roots of the Haar measure, due to Diaconis and Shahshahani, to the context of compact quantum groups. We provide a simple characterisation for compact quantum groups which admit no non-trivial square roots of the Haar state in terms of their corepresentation theory. In particular it is shown that such compact quantum groups are necessarily of Kac type and their subalgebras generated by the coefficients of a fixed two-dimensional irreducible corepresentation are isomorphic (as finite quantum groups) to the algebra of functions on the group of unit quaternions. An example of a quantum group whose Haar state admits no nontrivial square root and which is neither commutative nor cocommutative is given.

本文言語English
ページ(範囲)2079-2093
ページ数15
ジャーナルJournal of Pure and Applied Algebra
216
10
DOI
出版ステータスPublished - 2012 10
外部発表はい

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「On square roots of the Haar state on compact quantum groups」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル