On the asymptotic behavior of semilinear wave equations with degenerate dissipation and source terms

Vladimir Georgiev, Albert Milani

研究成果: Article査読

6 被引用数 (Scopus)

抄録

We investigate the asymptotic behavior of weak solutions to the semilinear non autonomous wave equation utt - Δu + ut|ut|p-1 = V(t)u|u|p-1 + f(.,t), where V(t) is a positive time dependent potential satisfying V(t) = O((1 + t)) as t → +∞ and ft decays to 0 as t → +∞. We show that for 0 ≤ λ ≤ p there are initial values such that the energy norm of the corresponding solutions grows at least polynomially as t → +∞, while if λ > p the energy norm remains uniformly bounded for any choice of initial values; moreover, in certain cases there is an absorbing ball for the orbits.

本文言語English
ページ(範囲)53-68
ページ数16
ジャーナルNonlinear Differential Equations and Applications
5
1
DOI
出版ステータスPublished - 1998 1 1
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「On the asymptotic behavior of semilinear wave equations with degenerate dissipation and source terms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル