抄録
Let X (k)(n) be the indicator function of the set of k-th power free integers. In this paper, we study refinements of the density theorem, ζ being the Riemann zeta function. The method we take here is a compactification of ℤ; we extend S (k) N to a random variable on a probability space (ℤ̂, λ) in a natural way, where Ẑ is the ring of finite integral adeles and λ is the shift invariant normalized Haar measure. Then we investigate the rate of L 2-convergence of S (k) N, from which the above asymptotic result is derived.
本文言語 | English |
---|---|
ページ(範囲) | 1027-1045 |
ページ数 | 19 |
ジャーナル | Osaka Journal of Mathematics |
巻 | 48 |
号 | 4 |
出版ステータス | Published - 2011 12月 |
外部発表 | はい |
ASJC Scopus subject areas
- 数学 (全般)