On the distribution of k-th power free integers, II

Trinh Khanh Duy, Satoshi Takanobu

研究成果: Article査読

1 被引用数 (Scopus)

抄録

The indicator function of the set of k-th power free integers is naturally extended to a random variable X(k)({dot operator}) on (ℤ○,λ), where ℤ○ is the ring of finite integral adeles and λ is the Haar probability measure. In the previous paper, the first author noted the strong law of large numbers for {X(k)({dot operator}+n)}n=1, and showed the asymptotics: Eλ[(Y(k)N)2]{equivalent to}1 as N→∞, where Y(k)N(x):=N-1/2kNn=1(X(k)(x+n)-1/ζ(k)). In the present paper, we prove the convergence of Eλ[(Y(k)N)2]. For this, we present a general proposition of analytic number theory, and give a proof to this.

本文言語English
ページ(範囲)687-713
ページ数27
ジャーナルOsaka Journal of Mathematics
50
3
出版ステータスPublished - 2013 9月
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「On the distribution of k-th power free integers, II」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル