On the evolution of compressible and incompressible viscous fluids with a sharp interface

Takayuki Kubo, Yoshihiro Shibata

研究成果: Article査読

抄録

In this paper, we consider some two phase problems of compressible and incompressible viscous fluids’ flow without surface tension under the assumption that the initial domain is a uniform Wq 2-1/q domain in RN (N ≥ 2). We prove the local in the time unique existence theorem for our problem in the Lp in time and Lq in space framework with 2 < p < ∞ and N < q < ∞ under our assumption. In our proof, we first transform an unknown time-dependent domain into the initial domain by using the Lagrangian transformation. Secondly, we solve the problem by the contraction mapping theorem with the maximal Lp-Lq regularity of the generalized Stokes operator for the compressible and incompressible viscous fluids’ flow with the free boundary condition. The key step of our proof is to prove the existence of an R-bounded solution operator to resolve the corresponding linearized problem. The Weis operator-valued Fourier multiplier theorem with R-boundedness implies the generation of a continuous analytic semigroup and the maximal Lp-Lq regularity theorem.

本文言語English
論文番号621
ジャーナルMathematics
9
6
DOI
出版ステータスPublished - 2021 3 2

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント 「On the evolution of compressible and incompressible viscous fluids with a sharp interface」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル