On the global well-posedness of some free boundary problem for a compressible barotropic viscous fluid flow

研究成果: Chapter

2 被引用数 (Scopus)

抄録

In this paper, we prove a global in time unique existence theorem for the free boundary problem of a compressible barotropic viscous fluid flow without surface tension in the Lp in time and Lq in space framework with 2 < p < ∞ and N < q < ∞ under the assumption that the initial domain is bounded and initial data are small enough and orthogonal to rigid motions. Such global well-posedness was proved by Zajaczkowski in 1993 in the L2 framework, and our result is an extension of his result to the maximal Lp -Lq regularity setting. We use the maximal Lp -Lq regularity theorem for the lin-earlized equations and the exponential stability of the corresponding analytic semigroup, which is a completely different approach than Zajaczkowski (1993).

本文言語English
ホスト出版物のタイトルContemporary Mathematics
出版社American Mathematical Society
ページ341-356
ページ数16
DOI
出版ステータスPublished - 2016

出版物シリーズ

名前Contemporary Mathematics
666
ISSN(印刷版)0271-4132
ISSN(電子版)1098-3627

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「On the global well-posedness of some free boundary problem for a compressible barotropic viscous fluid flow」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル