On the growth rate of ideal Coxeter groups in hyperbolic 3-space

研究成果: Article査読

4 被引用数 (Scopus)

抄録

We study the set G of growth rates of ideal Coxeter groups in hyperbolic 3-space; this set consists of real algebraic integers greater than 1. We show that (1) G is unbounded above while it has the minimum, (2) any element of G is a Perron number, and (3) growth rates of ideal Coxeter groups with n generators are located in the closed interval [n - 3, n - 1].

本文言語English
ページ(範囲)155-159
ページ数5
ジャーナルProceedings of the Japan Academy Series A: Mathematical Sciences
91
10
DOI
出版ステータスPublished - 2015

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「On the growth rate of ideal Coxeter groups in hyperbolic 3-space」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル