On the isothermal compressible multi-component mixture flow: The local existence and maximal Lp−Lq regularity of solutions

T. Piasecki, Yoshihiro Shibata, E. Zatorska

研究成果: Article

1 引用 (Scopus)

抜粋

We consider the initial–boundary value problem for the system of equations describing the flow of compressible isothermal mixture of arbitrary large number of components. The system consists of the compressible Navier–Stokes equations and a subsystem of diffusion equations for the species. The subsystems are coupled by the form of the pressure and the strong cross-diffusion effects in the diffusion fluxes of the species. Assuming the existence of solutions to the symmetrized and linearized equations, proven in Piasecki, Shibata and Zatorska (2019), we derive the estimates for the nonlinear equations and prove the local-in-time existence and maximal Lp−Lq regularity of solutions.

元の言語English
記事番号111571
ジャーナルNonlinear Analysis, Theory, Methods and Applications
189
DOI
出版物ステータスPublished - 2019 12 1

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics

フィンガープリント On the isothermal compressible multi-component mixture flow: The local existence and maximal L<sub>p</sub>−L<sub>q</sub> regularity of solutions' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用