On the maximal Lp-Lq regularity of solutions to a general linear parabolic system

Tomasz Piasecki, Yoshihiro Shibata, Ewelina Zatorska

研究成果: Article査読

抄録

We show the existence of solution in the maximal Lp−Lq regularity framework to a class of symmetric parabolic problems on a uniformly C2 domain in Rn. Our approach consist in showing R - boundedness of families of solution operators to corresponding resolvent problems first in the whole space, then in half-space, perturbed half-space and finally, using localization arguments, on the domain. Assuming additionally boundedness of the domain we also show exponential decay of the solution. In particular, our approach does not require assuming a priori the uniform Lopatinskii - Shapiro condition.

本文言語English
ページ(範囲)3332-3369
ページ数38
ジャーナルJournal of Differential Equations
268
7
DOI
出版ステータスPublished - 2020 3 15

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics

フィンガープリント 「On the maximal L<sub>p</sub>-L<sub>q</sub> regularity of solutions to a general linear parabolic system」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル