On the nonlinear Schrödinger equations of derivative type

研究成果: Article査読

87 被引用数 (Scopus)

抄録

This paper studies the Cauchy problem both at finite and infinite times for a class of nonlinear Schrödinger equations with coupling of derivative type. The proof uses gauge transformations which reduce the original equations to systems of equations without coupling of derivative type. Concerning the Cauchy problem at finite times, we give sufficient conditions for the global well-posedness in the energy space. Concerning the Cauchy problem at infinity, we construct modified wave operators on small and sufficiently regular asymptotic states.

本文言語English
ページ(範囲)137-163
ページ数27
ジャーナルIndiana University Mathematics Journal
45
1
DOI
出版ステータスPublished - 1996
外部発表はい

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント 「On the nonlinear Schrödinger equations of derivative type」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル