On the Picard number of rationally quartic connected manifolds

Taku Suzuki

    研究成果: Article

    抜粋

    In this paper, we study structures of smooth complex projective polarized manifolds (X, H) of dimension n ≥ 2 which are rationally connected with respect to a family of H-degree four. Under the assumption (-K<inf>X</inf> · ) ≥ n + 3, we prove that, with two kinds of exceptions, the Picard number of X is at most four and X is covered by rational curves of H-degree one. In addition, we provide a classification in case n = 2.

    元の言語English
    記事番号1450109
    ジャーナルInternational Journal of Mathematics
    25
    発行部数12
    DOI
    出版物ステータスPublished - 2014 11 16

    ASJC Scopus subject areas

    • Mathematics(all)

    フィンガープリント On the Picard number of rationally quartic connected manifolds' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用