On variants of symmetric multiple zeta-star values and the cyclic sum formula

Minoru Hirose, Hideki Murahara, Masataka Ono

研究成果: Article査読

抄録

The t-adic symmetric multiple zeta values were defined by Jarossay, which have been studied as a real analogue of the p-adic finite multiple zeta values. In this paper, we consider the star analogues based on several regularization processes of multiple zeta-star values: harmonic regularization, shuffle regularization, and Kaneko–Yamamoto’s type regularization. We also present the cyclic sum formula for t-adic symmetric multiple zeta(-star) values, which is the counterpart of that for p-adic finite multiple zeta(-star) values obtained by Kawasaki. The proof uses our new relationship that connects the cyclic sum formula for t-adic symmetric multiple zeta-star values and that for the multiple zeta-star values.

本文言語English
ジャーナルRamanujan Journal
DOI
出版ステータスAccepted/In press - 2021
外部発表はい

ASJC Scopus subject areas

  • Algebra and Number Theory

フィンガープリント 「On variants of symmetric multiple zeta-star values and the cyclic sum formula」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル