On verified computations of the optimal constant in the a priori error estimates for h0 2-projection

Mitsuhiro T. Nakao, Takehiko Kinoshita

研究成果: Conference contribution

抄録

In this paper, we show some constructive a priori error estimates for H0 2-projection into a space of polynomials on a one dimensional interval. Here, 'constructive' means we can get the error bounds in which all constants included are explicitly given or represented as a numerically computable form. By using the property of Legendre polynomials, we try to determine such constants as small as possible. Particularly, we will show the optimal constant could be enclosed in a very narrow interval. Then an application of the results to finite element H0 2- projection in one dimension is presented. This kind of estimates will play an important role in the numerical verification of solutions for nonlinear fourth order elliptic problems.

本文言語English
ホスト出版物のタイトルNumerical Analysis and Applied Mathematics - International Conference on Numerical Analysis and Applied Mathematics 2009, ICNAAM-2009
ページ926-929
ページ数4
1168
DOI
出版ステータスPublished - 2009
外部発表はい
イベントInternational Conference on Numerical Analysis and Applied Mathematics 2009, ICNAAM-2009 - Rethymno, Crete, Greece
継続期間: 2009 9 182009 9 22

Other

OtherInternational Conference on Numerical Analysis and Applied Mathematics 2009, ICNAAM-2009
CountryGreece
CityRethymno, Crete
Period09/9/1809/9/22

ASJC Scopus subject areas

  • Physics and Astronomy(all)

フィンガープリント 「On verified computations of the optimal constant in the a priori error estimates for h0 2-projection」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル