One-body energy decomposition schemes revisited: Assessment of mulliken-, grid-, and conventional energy density analyses

Yasuaki Kikuchi, Yutaka Imamura, Hiromi Nakai

研究成果: Article

6 引用 (Scopus)

抜粋

We propose a new energy density analysis (EDA) that evaluates atomic contributions of all energy terms, i.e., the kinetic, nuclear-attraction, Coulomb, and Hartree-Fock (HF) exchange and density functional theory (DFT) exchange-correlation energies using the Mulliken-type partitioning. Although widely used DFT exchangecorrelation functionals are nonlinear expressions in terms of density, they are decomposed into atomic contributions by focusing the linear part of the density. Numerical assessment on Mulliken-EDA, Grid-EDA, and conventional EDA has been carried out for the G2-1 set. Correlations between HF and DFT exchanges demonstrate that a consistent partitioning of all energy terms is essential for EDA. These numerical results confirm that the present Mulliken-EDA offers a more reasonable picture for the atomization process.

元の言語English
ページ(範囲)2464-2473
ページ数10
ジャーナルInternational Journal of Quantum Chemistry
109
発行部数11
DOI
出版物ステータスPublished - 2009 7 9

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics
  • Physical and Theoretical Chemistry

フィンガープリント One-body energy decomposition schemes revisited: Assessment of mulliken-, grid-, and conventional energy density analyses' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用