One-Step Hydrothermal Synthesis of SnS2/SnO2/C Hierarchical Heterostructures for Li-ion Batteries Anode with Superior Rate Capabilities

研究成果: Article

16 引用 (Scopus)

抄録

Novel three-dimensional hierarchical heterostructures composed of two-dimensional SnS2 nanoflakes and zero-dimensional SnO2 nanoparticles were fabricated via a one-step hydrothermal method. Size of the heterostructures was ca. 2 μm in diameter, and individual SnS2 nanoflakes with thickness of ca. 150 nm were connected to central core of the heterostructures. The SnO2 nanoparticles in a diameter of ca. 5 nm uniformly covered entire surface of the SnS2 nanoflakes. Moreover, both of these structures were highly crystalline. Meanwhile, amorphous carbon was formed within the heterostructures. The SnS2/SnO2/C hierarchical heterostructures had a high initial specific reversible capacity of 1065.7 mAh g-1, stable cycling stability of 638 mAh g-1 after 30 cycles, and superior rate capability of 550.8 mAh g-1 at 1C rate. These SnS2/SnO2/C hierarchical heterostructures showed better performance than individual SnS2 and SnO2 nanomaterials, and the performance was even higher than the graphene-SnS2 and graphene-SnO2 nanohybrid materials. This is attributed to a synergistic effect of high surface area, which is provided by the unique SnS2 internal nanoflake layered structures decorated with ultra-fine SnO2 nanoparticles, and an effective beneficial buffer matrix to accommodate the large volume change upon cycling, which is caused by the side-products such as Li2S or Li2O. The SnS2 nanoflake was deduced to play a similar role as graphene material, since both possess 2D conducting layer structures. The uniform carbon dispersion within the structures also stabilizes the structures and improves electrical conductivity of the hierarchical heterostructures.

元の言語English
ページ(範囲)78-84
ページ数7
ジャーナルElectrochimica Acta
183
DOI
出版物ステータスPublished - 2015 11 20

Fingerprint

Hydrothermal synthesis
Heterojunctions
Anodes
Graphite
Graphene
Nanoparticles
Amorphous carbon
Lithium-ion batteries
Nanostructured materials
Buffers
Carbon
Crystalline materials

ASJC Scopus subject areas

  • Electrochemistry
  • Chemical Engineering(all)

これを引用

@article{ee44bfe370d2495e851859687a663be1,
title = "One-Step Hydrothermal Synthesis of SnS2/SnO2/C Hierarchical Heterostructures for Li-ion Batteries Anode with Superior Rate Capabilities",
abstract = "Novel three-dimensional hierarchical heterostructures composed of two-dimensional SnS2 nanoflakes and zero-dimensional SnO2 nanoparticles were fabricated via a one-step hydrothermal method. Size of the heterostructures was ca. 2 μm in diameter, and individual SnS2 nanoflakes with thickness of ca. 150 nm were connected to central core of the heterostructures. The SnO2 nanoparticles in a diameter of ca. 5 nm uniformly covered entire surface of the SnS2 nanoflakes. Moreover, both of these structures were highly crystalline. Meanwhile, amorphous carbon was formed within the heterostructures. The SnS2/SnO2/C hierarchical heterostructures had a high initial specific reversible capacity of 1065.7 mAh g-1, stable cycling stability of 638 mAh g-1 after 30 cycles, and superior rate capability of 550.8 mAh g-1 at 1C rate. These SnS2/SnO2/C hierarchical heterostructures showed better performance than individual SnS2 and SnO2 nanomaterials, and the performance was even higher than the graphene-SnS2 and graphene-SnO2 nanohybrid materials. This is attributed to a synergistic effect of high surface area, which is provided by the unique SnS2 internal nanoflake layered structures decorated with ultra-fine SnO2 nanoparticles, and an effective beneficial buffer matrix to accommodate the large volume change upon cycling, which is caused by the side-products such as Li2S or Li2O. The SnS2 nanoflake was deduced to play a similar role as graphene material, since both possess 2D conducting layer structures. The uniform carbon dispersion within the structures also stabilizes the structures and improves electrical conductivity of the hierarchical heterostructures.",
keywords = "heterostructures, hydrothermal method, Li-ion batteries, SnO nanoparticles, SnS nanoflakes",
author = "Chen, {Chun Yi} and Tokihiko Yokoshima and Hiroki Nara and Toshiyuki Momma and Tetsuya Osaka",
year = "2015",
month = "11",
day = "20",
doi = "10.1016/j.electacta.2015.05.079",
language = "English",
volume = "183",
pages = "78--84",
journal = "Electrochimica Acta",
issn = "0013-4686",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - One-Step Hydrothermal Synthesis of SnS2/SnO2/C Hierarchical Heterostructures for Li-ion Batteries Anode with Superior Rate Capabilities

AU - Chen, Chun Yi

AU - Yokoshima, Tokihiko

AU - Nara, Hiroki

AU - Momma, Toshiyuki

AU - Osaka, Tetsuya

PY - 2015/11/20

Y1 - 2015/11/20

N2 - Novel three-dimensional hierarchical heterostructures composed of two-dimensional SnS2 nanoflakes and zero-dimensional SnO2 nanoparticles were fabricated via a one-step hydrothermal method. Size of the heterostructures was ca. 2 μm in diameter, and individual SnS2 nanoflakes with thickness of ca. 150 nm were connected to central core of the heterostructures. The SnO2 nanoparticles in a diameter of ca. 5 nm uniformly covered entire surface of the SnS2 nanoflakes. Moreover, both of these structures were highly crystalline. Meanwhile, amorphous carbon was formed within the heterostructures. The SnS2/SnO2/C hierarchical heterostructures had a high initial specific reversible capacity of 1065.7 mAh g-1, stable cycling stability of 638 mAh g-1 after 30 cycles, and superior rate capability of 550.8 mAh g-1 at 1C rate. These SnS2/SnO2/C hierarchical heterostructures showed better performance than individual SnS2 and SnO2 nanomaterials, and the performance was even higher than the graphene-SnS2 and graphene-SnO2 nanohybrid materials. This is attributed to a synergistic effect of high surface area, which is provided by the unique SnS2 internal nanoflake layered structures decorated with ultra-fine SnO2 nanoparticles, and an effective beneficial buffer matrix to accommodate the large volume change upon cycling, which is caused by the side-products such as Li2S or Li2O. The SnS2 nanoflake was deduced to play a similar role as graphene material, since both possess 2D conducting layer structures. The uniform carbon dispersion within the structures also stabilizes the structures and improves electrical conductivity of the hierarchical heterostructures.

AB - Novel three-dimensional hierarchical heterostructures composed of two-dimensional SnS2 nanoflakes and zero-dimensional SnO2 nanoparticles were fabricated via a one-step hydrothermal method. Size of the heterostructures was ca. 2 μm in diameter, and individual SnS2 nanoflakes with thickness of ca. 150 nm were connected to central core of the heterostructures. The SnO2 nanoparticles in a diameter of ca. 5 nm uniformly covered entire surface of the SnS2 nanoflakes. Moreover, both of these structures were highly crystalline. Meanwhile, amorphous carbon was formed within the heterostructures. The SnS2/SnO2/C hierarchical heterostructures had a high initial specific reversible capacity of 1065.7 mAh g-1, stable cycling stability of 638 mAh g-1 after 30 cycles, and superior rate capability of 550.8 mAh g-1 at 1C rate. These SnS2/SnO2/C hierarchical heterostructures showed better performance than individual SnS2 and SnO2 nanomaterials, and the performance was even higher than the graphene-SnS2 and graphene-SnO2 nanohybrid materials. This is attributed to a synergistic effect of high surface area, which is provided by the unique SnS2 internal nanoflake layered structures decorated with ultra-fine SnO2 nanoparticles, and an effective beneficial buffer matrix to accommodate the large volume change upon cycling, which is caused by the side-products such as Li2S or Li2O. The SnS2 nanoflake was deduced to play a similar role as graphene material, since both possess 2D conducting layer structures. The uniform carbon dispersion within the structures also stabilizes the structures and improves electrical conductivity of the hierarchical heterostructures.

KW - heterostructures

KW - hydrothermal method

KW - Li-ion batteries

KW - SnO nanoparticles

KW - SnS nanoflakes

UR - http://www.scopus.com/inward/record.url?scp=84956939702&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84956939702&partnerID=8YFLogxK

U2 - 10.1016/j.electacta.2015.05.079

DO - 10.1016/j.electacta.2015.05.079

M3 - Article

AN - SCOPUS:84956939702

VL - 183

SP - 78

EP - 84

JO - Electrochimica Acta

JF - Electrochimica Acta

SN - 0013-4686

ER -