Operating mechanism and resistive switching characteristics of two- and three-terminal atomic switches using a thin metal oxide layer

Tohru Tsuruoka*, Tsuyoshi Hasegawa, Kazuya Terabe, Masakazu Aono

*この研究の対応する著者

研究成果: Article査読

17 被引用数 (Scopus)

抄録

Atomic switches are nanoionic devices that are operated by controlling redox reactions and the local migration of metal ions in solids. The essential mechanism is the growth and shrinkage of a metal filament formed between two electrodes, resulting in repeatable resistive switching between high-resistance and low-resistance states, which can be used for next-generation nonvolatile memories. This review focuses on the operating mechanism and resistive switching characteristics of two- and three-terminal atomic switches using a thin metal oxide layer as an ion-conducting matrix. First, we describe the operating mechanism of a two-terminal atomic switch based on nucleation theory and present the results of temperature dependence and switching speeds to determine the validity of our switching model. Then, we discuss the effects that moisture absorption in the oxide matrix has on the fundamental processes and switching behavior in order to elucidate the importance of the porosity of the oxide matrix. Finally, we demonstrate a three-terminal atomic switch and describe the impact of the anode material or metal-ion species. These findings will contribute to the development of next-generation logic circuits with low-voltage operation and low-power consumption.

本文言語English
ページ(範囲)143-156
ページ数14
ジャーナルJournal of Electroceramics
39
1-4
DOI
出版ステータスPublished - 2017 12月 1

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • セラミックおよび複合材料
  • 凝縮系物理学
  • 材料力学
  • 電子工学および電気工学
  • 材料化学

フィンガープリント

「Operating mechanism and resistive switching characteristics of two- and three-terminal atomic switches using a thin metal oxide layer」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル